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A. Context

Secondary Organic Aerosols (SOA) are major constituents of the
troposphere, with mass often exceeding sulfate, nitrate, and soot
combined!"], and with impacts on human health’?, urban and regional
photochemistryl®], precipitation patternstl, and directly or indirectly on
climate!sl. SOA are by-products of the photo-oxidation of hydrocarbons,
both anthropogenic and biogenicl®7, but attempts to describe the chemistry
of their formation have fallen short by 0.5-2 orders of magnitudel®l.
Implementation of SOA in atmospheric models is still in its infancy and
recently!®'% include parameterizations of chamber-derived yields and
volatility distributions without specific information on SOA chemical
compositionl™-14],

We are developing a model of the explicit gas phase chemistry of
hydrocarbons leading to the formation of SOA!'>'8l.  Chemical pathways
and kinetics are obtained from compilations of laboratory measurements, or
derived from these using various structure-activity relations. The model
predicts the chemical identity of the products as well as their properties
relevant to gas/particle partitioning. The model is being evaluated with
observations in Mexico City (MILAGRO, 2006) of SOA mass (ug m) and
atomic ratios (oxygen and nitrogen to carbon ratios, O/C and N/C). The
major chemical constituents of SOA are identified as 3-hydroxy nitrates and
ketones from long-chain alkanes as observed in chamber studies!'”), and
nitro-catechols from aromatics. The importance of nitrogen-containing
molecules is noteworthy in our model results, although measurements by
aerosol mass spectrometry (AMS) suggest lower values!'8l.
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B. Model: The “Generator of Explicit Chemistry and

Kinetics of Organics in the Atmosphere” (GECKO-A)

« Aliphatic chemistry is represented explicitly via structure-activity
relationships!'sl.

« Aromatic chemistry to ring-opening is from Leeds MCM'®l mechanism.
« Saturation vapor pressures are computed using group contributions. 20
« Equilibrium gas/aerosol partitioning?!! using Raoult's law.

« No in-aerosol chemistry.

« 2 sets of assumptions reduce mechanism size:
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Eulerian simulation:
Afternoon ventilation reduces
aerosol mass in the city,
giving a daily cycle.
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Lagrangian simulation:
Aerosol mass production
continues as plume expands
downwind from city
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Conversion factor:

1 ppb 0.5 ug/m*
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C. Mexico City Model

« The explicit mechanism is used in a 0-D (box) model with diurnally-varying
temperature, solar cycle, emissions , deposition, and boundary layer height.
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Aerosol Constituents
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Examples of major contributors
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Straight-chain NMHCs
n-eicosane & n-nonadecane
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Monofunctional nitrates
e.g. pentadecane-2-nitrate
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Delta-hydroxy-nitrates
R-CH(ONO)-2(CH,)-CH,(OH)
R-CH(ONO,)-2(CH,)-CH(OH)-CH;
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Beta-hydroxy-carbonyls
R-CH(OH)-CH,-CO-CH3 03, 2°

Tri-functional chains
R-CH(ONO,)-CO-CH,-CH,(OH)
R-CH(OH)-CH,-CO-CH,(ONO,)
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Substituted Aromatics
2-methyl-4,6-dinitro-phenol N
Precursor:toluene Ho.

" . -
3,5-dimethyl-6-nitro-catechol.
Precursor: m-xylene

Aromatic ring-opened products
2,3-epoxy-4-hydroxy-2-methyl-5-nitrooxy-6- 0\\”’
oxo-heptanal. — o
Precursor: m-xylene N o

o

8-hydroxy-1,4,5-trimethyl-4-nitrooxy6,7-
dioxa-[3.2.1]bicyclo-oct-2-ene Ho N\
Precursor: 1,2 4-trimethylbenzene

CH;-C(CO(OH))=C(NO,)-CHO
Precursor: various aromatics o
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